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Abstract   
We consider the models of elliptical accretion discs developed by Lyubarskij et al. 

[1] and discuss their specific properties. In particular, we emphasize on possible deviations 
from the Keplerian rotation, magnetorotational instability, external illumination of the disc, 
etc., which may take place with real accretion flows (as indicated by a lot of observations), 
but are not taken into account in the above theoretical constructions. According to the 
models, the viscosity coefficient η is adopted to have a power law form: η = β Σ n (β is a 
constant, Σ is the disc surface density). We investigate the dynamical equation, which is 
derived by Lyubarskij et al. [1], for a continuous set of values of the power n. Physically 
reasonable n occupy the zone between ≈ -1 and ≈ +3. The basic result of our investigation 
is that the dynamical equation, governing the structure of elliptical discs, is a homogeneous 
second order ordinary differential equation for any values of n in the designated interval. 
This is a generalization of our previously established result for the case of integer values of 
n only.   
 
 

Introduction 
 

In this paper we continue the investigation of elliptical accretion 
discs described by Lyubarskij et al. [1] about 15 years ago. The essential 
feature of their model is that not only the disc particles have elliptical orbits, 
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but also the apse lines of all orbits are in line with each other. It would be 
stressed that it provides for changes in the eccentricity between adjacent 
streamlines. In other words, the eccentricities of the particle orbits may (in 
principle) vary for different parts of the accretion disc – its inner, middle 
and outer regions. The motion of the particles along the ellipses is supposed 
to be Keplerian and the dynamics of the disc is treated in the framework of 
viscous hydrodynamics. In fact, the above cited work [1] generalizes to 
some extent the well known α-disc model of Shakura and Sunyaev [2], 
where all particle orbits are a priori assumed to be circular. We shall 
consider in our investigation only the case of stationary accretion discs. The 
simplifications applied in the paper [1] lead to a second-order ordinary 
differential equation, which governs the structure of the accretion disc, 
namely, the dependence of eccentricity on the focal parameter p of the 
corresponding ellipse. The situation is not so favourable, in view of 
simplicity, in the more general models of elliptical discs considered by 
Ogilvie [3]. The base line followed by us is to study analytically these 
objects as much as possible in order to minimize the application of 
numerical methods and eventually, reveal more clearly some properties of 
the solutions. Despite of the property that the Ogilvie’s model [3] is much 
more realistic and more appropriate to be checked by means of astronomical 
observations than earlier model of Lyubarskij et al. [1], we shall concentrate 
on the latter for the above mentioned reasons. Some results concerning the 
problem of solving of the dynamical equation for the accretion disc model 
of Lyubarskij et al. [1] were already published earlier in papers [4–9]. The 
present research may be considered as a supplement to the case of integer 
powers n [7] in the sense that now we shall consider arbitrary (but 
physically reasonable!) values of n, which may not be integers. More 
specifically, it will be allowed that n ≠ -1, 0, +1, +2, +3. Of course, between 
integer values, n may vary continuously. We remind that, according to the 
adopted viscosity law η = β Σ n in the accretion disc model of Lyubarskij et 
al. [1], n is the power of the disc surface density Σ and it is allowed to take 
continuous (but later on fixed!) values in some appropriate interval. The 
more general situation, when the power n eventually depends on some 
physical and geometrical factors like pressure, temperature, volume density, 
distance to the compact object, shape of the accretion disc and so on, is out 
of the scope of our investigation. Henceforth, the quantity n (and also the 
factor β) are considered to be constants and the variation of the viscosity 
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coefficient η throughout the disc is determined by the variation of its surface 
density Σ.  

With the accumulation of observational data about accretion discs in 
binary stellar systems, it becomes more and more evident that the ellipticity 
of these objects is not only a possible theoretical construction, but it is often 
a phenomenon occurring in reality. The overview paper [10] gives some 
examples on this subject. We shall now add to this list of papers several 
more recent results concerning the theme of elliptical discs. Especially, we 
shall mention the photometric observations of Howell et al. [11] in the 
infrared region of the electromagnetic spectrum of the eclipsing interacting 
binary WZ Sge. There is evidence that the accretion flow in this stellar 
system is much more complex than previously suggested. The astronomical 
observations support the conclusion that that the so-far-known gaseous 
accretion disc is surrounded by an asymmetric disc of dusty material with a 
radius about 15 times larger than the outer radius of the gaseous disc. The 
dust disc contains only a small amount of mass and is completely invisible 
at optical and near-infrared wavelengths. Such discovery in respect to the 
structure of the global (gas + dust) disc has significant influence on 
accretion disc theory. It suggests the need of certain generalization of the 
model, advocated by Lyubarskij et al. [1], to “two-component disc” case, 
but we shall not deal with this problem here. Indications of the presence of 
an elliptical accretion disc are found in the X-ray binary star UW Coronae 
Borealis [12]. The interpretation of the light curve for this system is based 
on the assumption of eclipse of an accretion disc around a neutron star by 
the secondary star. The surface brightness of the accretion disc is strongly 
asymmetric and highly variable. Observations show that the variations of 
eclipse morphology are repeated at a period of 5.5 days and the shape of the 
superhump-like modulation also varies at this period. The model developed 
by Mason et al. [12] assumes elliptical distribution of surface brightness 
and, respectively, the disc precesses at the 5.5-day period in order to 
reproduce the eclipse depths and the times of mideclipse. The superhump-
like variability phenomenon for the UW Coronae Borealis star may be 
explained reasonably well by an elliptical precessing disc. The paper of 
Ferreira and Ogilvie [13] considers warping and eccentric disturbances 
propagating inwards in discs around black holes under a wide variety of 
conditions. It is assumed that the deformations are stationary and propagate 
in a disc model similarly to the regions (a) (dominant radiation pressure; 
electron scattering on free electrons plays the main role) and (b) (dominant 
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gas pressure; electron scattering accounts for the main contribution to 
opacity) of Shakura and Sunyaev discs [2]. This investigation shows that the 
propagation of warping and eccentric deformations to the innermost regions 
of the disc is favoured by the low viscous damping and the high accretion 
rate.  
 

Deviations from the Keplerian Rotation of Accretion Flows 
 

The elliptical accretion disc model of Lyubarskij et al. [1] assumes 
the idea (and this concept is supported by the observations) that the discs are 
Keplerian, i.e., rotationally supported gaseous/dust discs. The common 
scenario, which naturally leads to the formation of Keplerian discs, is the 
viscous decretion model. According to it, discs are hydrodynamically 
supported in the vertical direction, while the radial structure is governed by 
viscous transport. This circumstance determines that the temperature is a 
primary factor that governs disc density structure. Of course, many physical 
and geometrical properties of accretion flows depend on the central stars 
around which discs rotate. For example, Carciofi et al. [14] discuss the basic 
hydrodynamics that determines the density structure of the discs around hot 
stars and solve the full problem of the steady state nonisothermal viscous 
diffusion and vertical hydrostatic equilibrium. They find that for Keplerian 
viscous discs, the self-consistent solutions depart significantly from the 
analytic isothermal density, which may have potentially large effects on the 
emergent spectrum. The implication is that for detailed modelling of Be star 
discs, nonisothermal disc models must be used. But in the opposite case, 
Shu et al. [15] find that strong magnetization makes the discs surrounding 
young stellar objects to rotate at rates that are too sub-Keplerian to enable 
the thermal launching of disc winds from their surfaces. An exception is 
observed when the rate of gas diffusion across field lines is dynamically 
fast. Another study [16] also supports the possibility of non-Keplerian 
motion in the inner regions of accretion discs around compact objects (i.e., 
the orbital frequency of the gas deviates from the local Keplerian value). It 
is shown that for long-wavelength modes in this region, the radial epicyclic 
frequency k is higher than the azimuthal frequency Ω. This circumstance 
may have significant implications for models of the twin kilohertz quasi-
periodic oscillations observed in many neutron star sources. Hence, it can be 
subject to observational verifications. Deviations from the Keplerian 
velocity law are able to cause various kinds of instabilities, which are not 
taken into account in the model of Lyubarskij et al. [1] considered by us. 
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For example, in the paper of Barranko [17] it is shown that, as the dust in a 
protoplanetary disc settles, a vertical shear develops. The reason for this 
phenomenon is that the dust-rich gas in the midplane of the accretion disc 
orbits at a rate closer to the Keplerian velocity than the slower moving dust-
depleted gas above and below the midplane. The classical analysis (i.e., 
neglecting the Coriolis force and differential rotation) performed by 
Barranko [17] predicts that Kelvin-Helmholtz instability occurs when the 
Richardson number of the stratified shear flow is ≤ 1/4. Planets embedded in 
optically thick passive accretion discs are also expected to produce 
perturbations in the density and temperature structure of the disc. The 
calculated magnitudes of these perturbations for a range of planet masses 
and different radial distances from the center of the disc are given in [18]. It 
is demonstrated that a self-consistent calculation of the density and 
temperature structure of the accretion flow has great effect on the disc 
model. In addition, the temperature structure in the disc is highly sensitive 
to the angle of incidence of stellar irradiation at the surface. Therefore, the 
accurate calculation of the shape of the disc surface is crucial for modelling 
the disc’s thermal structure. In this connection it is worthy to note that the 
model of Lyubarskij et al. [1] does not take into account the external 
illumination of elliptical accretion discs.  

The investigation of the magnetorotational instability and its 
evolution in protoplanetary discs that have radial non-uniform magnetic 
field which allow stable and unstable regions to coexist initially is 
considered in paper [19]. It is found that a zone in which the disc gas rotates 
with a super-Keplerian velocity emerges as a result of the non-uniformly 
growing magnetorotational turbulence. It is also established that the original 
Keplerian shear flow is transformed to a quasi-steady flow such that more 
flattened (even with rigid rotation in the extreme cases) velocity profile 
emerges locally and the outer part of the velocity profile tends to be super-
Keplerian. According to Kato et al. [19], angular momentum and mass 
transfer due to temporally generated magnetorotational instability 
turbulence in the initially unstable region are responsible for this 
transformation. Since the paper of Lyubarskij et al. [1] (and, consequently, 
our investigations, which are based on it) does not include the latter factor, 
we shall very briefly discuss in the next section how this simplification 
affects the accretion disc structure and how it restricts the applicability of 
this model. Of course, we must have in mind that the other approximations 
are also essential.   
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Significance of Magnetic Instabilities for the Realistic 
Description of Accretion Disc Models around Stellar Mass 
Objects 
 

Let us take into consideration the work of Nekrasov [20] where 
electromagnetic streaming instabilities of multicomponent collisional 
magnetized accretion discs are studied. In this paper, sufficiently ionized 
regions of the disc are explored because there is strong collisional coupling 
of neutral atoms with both ions and dust grains simultaneously. The steady 
state is investigated in details and the azimuthal and radial background 
velocities of the species are calculated. The azimuthal velocities of ions, 
dust grains and neutral particles are found to be less than the Keplerian 
velocity. Concerning the radial velocities of the latter and the dust grains, it 
is shown that they are directed inward of the disc. Also, the dispersion 
relation for the vertical perturbations is derived and its unstable solutions, 
due to different background velocities of ions and electrons, are established 
[20]. It is found that the growth rates of the considered streaming 
instabilities can be much larger than the Keplerian frequency.  

The accretion disc model of Lyubarskij et al. [1] is developed on the 
basis of classical Newtonian mechanics, i.e. general relativistic effects are 
not taken into account. But these may be essential in the near vicinities of 
compact objects. Consequently, by the notation “inner boundary”/ 
“innermost radius” of the accretion disc (respectively, “the smallest 
parameter” pmin (or pin) of the elliptical disc) we shall mean such a value of 
the parameter p which marks the boundary closest to the central star, inside 
which the considered disc models are not already so good approximations as 
for the outer parts of the disc. Unfortunately, the general relativistic 
constraints are not the only factors that are able to impose restrictions on the 
reasonable validity of the model in the innermost regions of accretion flow. 
It is not excluded at all that other physical conditions and geometrical 
arguments may “augment” the value of the “inner disc radius” beyond the 
limit placed by the general relativistic considerations. In this sense, it is 
worthy to note the recent investigation of Beckwith et al. [21], which 
examines general relativistic magnetohydrodynamic simulations of black 
hole accretion. They find significant magnetic stresses near and inside the 
innermost stable circular orbit, which implies that such flows could radiate 
in a manner noticeably different from the prediction of the standard α-model 
of Shakura and Sunyaev [2]. The latter model assumes that in these regions 
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there are not stresses. Beckwith et al. [21] obtain estimates of how 
phenomenologically important parameters like the “radiation edge” (i.e., the 
innermost ring of the disc from which substantial thermal radiation escapes 
to infinity) may be altered near the innermost stable circular orbit. Their 
estimates are based on a large number of 3D general relativistic 
magnetohydrodynamic simulations combined with general relativity ray 
tracing. For slowly spinning black holes, the radiation edge lies well inside 
where the standard α-disc model [2] predicts, particularly when the stellar 
system is viewed at high inclination. For more rapidly spinning black holes, 
the contrast is established to be smaller. It is estimated in [21] that for a 
fixed total luminosity, the characteristic temperature of accretion flow 
increases by a factor between 1.2 and 2.4 over that predicted by the standard 
model [2]. If the mass accretion rate is fixed, there is a corresponding 
enhancement of accretion luminosity, which may be anywhere from tens of 
percent to the order of unity [21].  

In our investigation, we are dealing with stationary (i.e., steady 
state) models of accretion discs. But we must keep in mind that the more 
realistic descriptions take into account different kinds of instabilities. For 
this reason, we shall add some remarks concerning this item in order to 
emphasize to some extent the limitations inherent to our model. For 
example, when the accretion rate is more than a small fraction of the 
Eddington rate dΜEdd/dt, the inner regions of the accretion discs around 
black holes are expected to be radiation-dominated. However, in the α-
models [1,2] these regions are, in addition, thermally unstable. In the 3D 
radiation magnetohydrodynamic simulations of a vertically stratified 
shearing box (ratio of radiation to gas pressure prad/pg ~ 10) performed by 
Hirose et al. [22], no thermal runaway occurs over a timespan of 40 cooling 
times tcool. They observe that stress and total pressure are well correlated as 
predicted by the α-model [2], but stress fluctuations precede pressure 
fluctuations, contrary to the common suggestion that pressure controls the 
saturation level of magnetic energy. According to [22], this circumstance 
determines the thermal stability of the accretion flow. When the thin 
accretion discs around black holes are perturbed, the main restoring force is 
gravity. The authors of paper [23] state that, if gas pressure, magnetic 
stresses and radiation pressure are neglected, the disc remains thin as long as 
the particle orbits do not intersect (this condition is fulfilled by hypothesis in 
the model of Lyubarskij et al. [1] !). They also find that a discrete set of 
perturbations is possible for which orbits remain non-intersecting for 
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arbitrarily long times. Correspondingly, these models define a discrete set of 
perturbations.  

According to [24], accretion discs in which angular momentum 
transport is dominated by magnetorotational instability may also possess 
additional (purely hydrodynamic) turbulence drivers. Even when the 
hydrodynamic processes themselves generate negligible levels of transport, 
they may still affect the disc’s evolution through their influence on 
magnetorotational instability. The conclusion is that the impact of 
hydrodynamic turbulence is generically subject to ignorance only in some 
cases. Such a phenomenon is convection, where additional turbulence arises 
due to the accretion energy released by magnetorotational instability alone. 
Hydrodynamic turbulence may affect (either enhance or suppress) 
magnetorotational instability, if it is both strong and driven by independent 
mechanisms, such as self-gravity, supernovae explosions or solid(dust) 
particles-gas interactions in multiphase protoplanetary discs [24].  

With the above notes about the adopted simplifications, which are 
intrinsic to standard α-disc models [1,2], we now begin to consider a very 
concrete problem, namely, the transformation of the dynamical equation for 
elliptical accretion discs (derived by Lyubarskij et al. [1]) to a more simple 
form. The main purpose of our approach is to do this in purely analytical 
way. It may come out that the final results of our attempts do not provide 
successfully to express this equation in a form, which allows solving it by 
means of the known standard methods from the theory of ordinary 
differential equations. But even in this pessimistic scenario, we hope that 
this will reveal some properties of the physical and mathematical structure 
of the disc model [1].  
 

The Dynamical Equation and the Specific Characteristics  
of Its Terms 

 

For clarity of subsequent computations, we rewrite here the 
dynamical equation governing the structure of elliptical accretion discs 
(with orbits of their species sharing a common longitude of periastron; [1]) 
in the form which was already derived in the previous paper [6]:  

 
 

(1) Σ Aik(e,ė,n) Ii(e,ė,n) Ik(e,ė,n) ë + Σ BBlm(e,ė,n) Il(e,ė,n) Im(e,ė,n) ė = 0,  
               i,k                                                                             l,m 
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where the indices i, k, l and m independently take the values of 0─, 0+, 0, 1, 
2, 3 and 4. The eccentricity e of the ellipse of each particle trajectory and its 
derivative ė = de/du ≡ de/d(lnp) with respect to the logarithmic scale u ≡ lnp 
of the focal parameter p of the ellipse, are (strictly speaking) functions of u 
and the power n in the viscosity law η = β Σ n. According to the agreement 
made in the beginning of the present paper, we shall assume in what 
follows, that n is an arbitrarily chosen fixed non-integer number. That is to 
say, the quantity n does not vary along the values of the focal parameter p 
(the “radius” of the disc). Naturally, the convention that n is the same for all 
parts of the accretion disc, simplifies greatly the mathematical treatment of 
the problem. Consequently, for every previously selected (and after that 
fixed !) value of n between ≈ -1 and ≈ +3, we shall consider e and ė as 
functions depending only on u ≡ lnp. We rewrite the definitions of the 
integrals I0─, I0+, I0, I1, I2, I3 and I4 [6]:   
                                                      2 π       

(2) I0─(e,ė,n) ≡ ∫(1 + ecosφ)n - 3[1 + (e – ė)cosφ] - (n + 1) dφ ,  
                                                      0                 

                                                    2  π        

(3) I0+(e,ė,n) ≡ ∫(1 + ecosφ)n - 2[1 + (e – ė)cosφ] - (n + 2) dφ ,   
                                                     0              

                                                2 π         

(4) Ij(e,ė,n) ≡ ∫(cosφ)j (1 + ecosφ)n - 2[1 + (e – ė)cosφ] - (n + 1) dφ ;   
                                                 0 

 

          j = 0, 1, 2, 3, 4.  
                                                      

The appearance of the above seven integrals in dynamical equation 
(1) is related to the averaging over the azimuthal angle φ, as proceeded in 
the model of elliptical accretion discs [1]. The other quantities to appear in 
equation (1) are the coefficients Aik(e,ė,n) and BBlm(e,ė,n), which are known 
functions of e, ė and n. Their writing in explicit form is too long to be given 
here and we shall miss this procedure in order to save unnecessary tedious 
formulae. We stress that the main purpose of the present paper is not to 
investigate the known functions Aik and BlmB , but to overcome the difficulties 
generated by the presence of these seven integrals, I0─, I0+, I0,…, I4, in 
dynamical equation (1). It must be pointed out that both the coefficients Aik 
and BBlm and the integrals I0─, I0+, I0,…, I4 are, as a final result, functions of 
the parameter u ≡ lnp. But actually, at this stage of the task’s solving, we do 
not know the solution(s) of equation (1). This is just our final goal ! For 
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this reason, we shall assume in what follows {e, ė and n = preliminary fixed 
constant} to be independent variables, having however in mind that 
differentiation of e with respect to u (we note this by a dot ( )) gives ė. 
Because ė may also depend on u, it is again true that dė/du = ë(u). These 
properties must be taken into account when the above-considered 
coefficients and integrals, participating in the subject-to-simplifications 
equation (1) undergo differentiation with respect to e(u) or ė(u).   

 · 

 
Proof that the Dynamical Equation Is a Second-Order 
Homogeneous Ordinary Differential Equation 
 

In the original deriving of the dynamical equation, which determines 
the structure of elliptical discs with orbits sharing a common longitude of 
periastron, Lyubarskij et al. include a free term ([1], equation (45)):  
 
(5) F(e,ė,n) ≡ Y[(3/2)W – Z – (1/2)(1 – e2)Y] ,  
 
The bars above Y, Z and W (which are present in paper [1], but are omitted 
in our notations for typographical technical reasons) denote averaging over 
the azimuthal angle φ. At first sight, it seems that this expression (5) 
stipulates the dynamical equation ([1], equation (45)) to be an 
inhomogeneous differential equation. For accretion discs with constant 
eccentricity of particle orbits (ė(u) ≡ 0; correspondingly ë(u) ≡ 0 throughout 
the disc) it is obvious from ([1],equation (45)) that the free term F(e,ė,n) (5) 
vanishes in a similar way for the entire disc. In the earlier paper [7], the 
explicit expressions for the auxiliary functions Y(e,ė,n), Z(e,ė,n) and 
W(e,ė,n) were given for integer values of n (n = -1, 0, +1, +2, +3) ([7], 
equations (7a) – (11c)). Proving the homogeneity of the dynamical equation 
in the latter case was based on a little different approach. There is no 
necessity for the free term F(e,ė,n) to be identically equal to zero. It is 
enough to show that F(e,ė,n) factorizes and one of the factors is just the 
derivative of the eccentricity ė(u) ≡ de/du. Further on, F(e,ė,n) can be 
“absorbed” into the term {Y(e,ė,n)[∂Z(e,ė,n)/∂e] - Z (e,ė,n)[∂Y(e,ė,n)/∂e] – 
Y2(e,ė,n)e}ė ([1], equation (45)), which also contains as a common factor 
the first derivative ė(u). This implies that equation (45), established by 
Lyubarskij et al. [1], is in fact, a second-order homogeneous ordinary 
differential equation. In paper [7], factorization of the free term F(e,ė,n) is 
evident from its explicit computation thanks to the already analytically 
evaluated expressions for integrals I0─, I0+, I0, I1, I2, I3 and I4 (see equations 
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(2a)–(6h) from [7]). There, it was only noticed that the proof of the 
homogeneity of the dynamical equation may be also generalized to the case 
of non-integer values of the power n. We shall now give a proof of this 
statement. We shall take into account the circumstance that we do not know 
(at least at the present time!) any analytical evaluations for non-integer n of 
the integrals I0─, I0+, I0, I1, I2, I3 and I4, defined by relations (2), (3) and (4).   

Let us start with detailed derivation of the expressions for Y(e,ė,n), 
Z(e,ė,n) and W(e,ė,n). Here we make an important note. For technical/ 
typographical reasons, we denote by Y(e,ė,n), Z(e,ė,n) and W(e,ė,n) the 
corresponding angle-averaged functions defined by equation (42) in the 
paper of Lyubarskij et al. [1], and denoted by barred gothic capital letters. 
This is, of course, evident when we write the free term F(e,ė,n) (5) in our 
paper and compare it with the notations in the dynamical equation (45) in 
[1]. Consequently, our notations Y(e,ė,n), Z(e,ė,n) and W(e,ė,n) must not be 
erroneously identified with the same designated quantities in [1] (equations 
(35), (36) and (38)). The latest we shall rewrite as:   
 
(6) Y1(e, ė, φ) ≡ – (2/3)(GMp) - 1/ 2 g r pσ pφ ,   
 

(7) Z1(e, ė, φ) ≡ – (2/3)(GM/p) - 1Viσ pi g 1/ 2 ,   
 

(8) W1(e, ė, φ) ≡ (2/9)(GM/p2) - 1σi k σi k g 1/ 2 .  
 
Note that these functions Y1, Z1 and W1 do not depend on the power n (see 
expressions (A5), (A7), (A12), (A14) and (A16) from Appendix A of [1]; 
see also formulae (9), (10) and (11) bellow in this paper). In the above 
formulae (6)–(8), G is the Newton’s gravitational constant, M is the mass of 
the central star around which the accretion disc rotates, p is the focal 
parameter of the considered elliptical particle orbit. To describe the 
problem, non-orthogonal curvilinear coordinates (p, φ) are used instead of 
Cartesian ones (x, y). Correspondingly, Vi (i = p, φ) are the covariant 
components of the Keplerian velocity, σi k and σi k (i, k = p, φ) are the 
covariant and contravariant components of the shear tensor σ, g is the 
determinant of the metric tensor and r p is the contravariant p-component of 
the radius vector r. We perform in advance: (i) correction of some 
typographical errors and (ii) simplification of some expressions in Appendix 
A to Lyubarskij et al. [1]. For example, the right-hand side of the formula 
for the trace of the shear tensor σ ≡ σi k σi k ([1], equation (A16)) may be 
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factorized. The substitution of the final results in (6)–(8) gives the following 
representations about the auxiliary functions:   
 
(9)  3Y1(e, ė, φ) = (1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1(3 + 7ecosφ + e2 +     

4e2cos2φ +  e3cosφ – 4ėcosφ + 2eė – 8eėcos2φ – 2e2ėcosφ) ,   
 
(10) 3 Z1(e, ė, φ) = (1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1(3 + 13ecosφ + 

22e2cos2φ + 2e3cosφ + 16e3cos3φ + e4 + 2e4cos2φ + 4e4cos4φ + 
e5cosφ – 4ėcosφ – 2eė – 12eėcos2φ – 6e2ėcosφ –12e2ėcos3φ – 2e3ė – 
4e3ėcos2φ – 2e4ėcosφ – 4e3ėcos4φ) ,  

 
(11) 9 W1(e, ė, φ) = (1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1(9 + 33ecosφ – 

2e2cos2φ – 2 e3cosφ + 32e3cos3φ + e4 + 8e4cos4φ + e5cosφ – 24ėcosφ 
+ 4eė – 72eėcos2φ + 4e2ėcosφ – 72e2ėcos3φ – 4e3ė – 24e3ėcos4φ – 
4e4ėcosφ + 8ė2 + 8ė2cos2φ + 8eė2cosφ + 24eė2cos3φ + 4e2ė2 + 
16e2ė2cos4φ + 4e3ė2cosφ) .  

 
From Appendix A ([1], equations (A5) and (A12)), we also compute:  

 

(12) (g1/ 2 Vφ )n = (GM/p)n/ 2 (1 + ecosφ) – n[1 + (e – ė)cosφ] n .   
 
Then, following definitions (40) and (42) from the paper of Lyubarskij et al. 
[1], we can write the new auxiliary functions (depending already on n):  
 
(13) Y2(e, ė, n, φ) ≡ Y1(e, ė, φ)(g1/ 2 V φ ) – n ,  
 
(14) Z2(e, ė, n, φ) ≡ Z1(e, ė, φ)(g1/ 2 V φ ) – n ,  
 
(15) W2(e, ė, n, φ) ≡ W1(e, ė, φ)(g1/ 2 V φ ) – n ,  
 
We stress again that in our notations the symbol “dot” ( · ) means 
differentiation with respect to the variable u ≡ lnp, not with respect to the 
time t. Finally, the averaging over the azimuthal angle φ yields the 
expressions for Y(e,ė,n), Z(e,ė,n) and W(e,ė,n) we are seeking for:                                                        
                                                                             2 π 

(16) 3Y(e,ė,n) ≡ (3/(2π))∫Y2(e, ė, n, φ)dφ = (2π) -1(p/GM) n/ 2[(3 + e2 +  
                                                                                 0

2eė)I0 + (7e + e3 – 4ė – 2e2ė)I1 + (4e2 – 8eė)I2] ,  
                                                                                2 π              

(17) 3Z(e,ė,n) ≡ (3/(2π))∫Z2(e, ė, n, φ)dφ = (2π) -1(p/GM) n/ 2[(3 + e4 – 2eė  
                                                                                0
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– 2e3ė)I0 + (13e + 2e3 + e5 – 4ė – 6e2ė – 2e4ė)I1 + (22e2 + 2e4 – 12eė 
– 4e3ė)I2 + (16e3 – 12e2ė)I3 + (4e4 – 4e3ė)I4] ,  

                                                                                  2 π                 

(18) 9W(e,ė,n) ≡ (9/(2π))∫W2(e, ė, n, φ)dφ = (2π) -1(p/GM) n/ 2[(9 – 2e2 +  
                                                                                   0

e4 + 4eė – 4e3ė + 8ė2 + 4e2ė2)I0 + (33e – 2e3 + e5 – 24ė + 4e2ė – 4e4ė 
+ 8eė2 + 4e3ė2)I1 + (48e2 – 72eė +8ė2)I2 + (32e3 – 72e2ė + 24eė2)I3 + 
(8e4 – 24e3ė + 16e2ė2)I4] .  

 
       In deriving the last three expressions, we took into account definitions 
(4) of the integrals Ij(e, ė, n), (j = 0, 1, 2, 3, 4). Having already the results 
(16)–(18), it is simple to calculate the free term F(e,ė,n):  
 

(19) 18F(e,ė,n) ≡ (3Y)[9W – 2(3Z) + (e2 – 1)(3Y)] = (2π2) –1(p/GM) n ė 
[(9e + 6e3 + e5 + 12ė +16e2ė + 4e4ė + 8eė2 + 4e3ė2)I0

2 + (– 18 + 36e2 
+ 14e4 + 16eė + 32e3ė – 16ė2 – 8e2ė2)I1I0 + (– 42e + 43e3 – e7 + 24ė 
+ 12e2ė + 8e4ė + 4e6ė – 16eė2 – 16e3ė2 – 4e5ė2)I1

2 + (– 60e – 8e3 + 
4e5 + 12ė – 44e2ė – 24eė2 – 16e3ė2)I2I0 + (– 164e2 + 8e4 – 4e6 
+156eė + 4e3ė + 16e5ė – 16ė2 – 40e2ė2 – 16e4ė2)I2I1 + (– 80e3 + 
176e2ė – 32eė2)I2

2 + (– 72e2 – 24e4 + 36eė – 36e3ė + 24e2ė2)I3I0 + (– 
168e3 – 24e5 +180e2ė + 60e4ė - 48eė2 - 24e3ė2)I3I1 + (– 96e4 + 
240e3ė – 96e2ė2)I3I2 + (– 24e3 – 8e5 + 24e2ė – 8e4ė + 16e3ė2)I4I0 + (– 
56e4 – 8e6 + 88e3ė + 24 e5ė – 32e2ė2 – 16e4ė2)I4I1 + (– 32e5 + 96e4ė – 
64e3ė2)I4I2] .   

 
The above complex and lengthy expression shows clearly that a common 
factor ė appears when factorization has been performed. It is worthy to note 
that we have not imposed any restrictions on the power n in the viscosity 
law η = β Σ n. That is to say, the purely analytically derived result (19) is 
valid both for integer and non-integer values of n. As a final result, the 
“free” term F(e,ė,n), given by definition (5), can be absorbed into the term 
(Y∂Z/∂e - Z∂Y/∂e – Y2e)ė of the dynamical equation ([1], equation (45); 
call to mind that we are using other notations in the present paper, as 
mentioned earlier). This completes the proof that the dynamical equation, 
which determines the structural properties of stationary elliptical accretion 
discs with apse lines of all orbits assumed to be in line with each other, is a 
second-order homogeneous ordinary differential equation. This argument 
was taken into account when we wrote the dynamical equation in form (1).  
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Conclusions 
 

As illustrated by relation (19), the coefficients Aik(e, ė, n) and BBlm(e, 
ė, n), (i, k, l, m = 0─, 0+, 0, 1, 2, 3, 4) are expected to be very complex 
functions of their arguments e, ė and n. Consequently, the homogeneity of 
dynamical equation (1) is far from the condition to be a sufficiently 
simplifying property, allowing for its easy (or without great difficulties) 
solving by means of purely analytical methods. For this reason, the 
necessity arises to find additional simplifications of equation (1), though 
there are no optimistic indications for such useful possibilities. Even in the 
case of integer values of the power n in the viscosity law η = β Σ , when 
each of the seven integrals I

 n

0─, I0+, I0, …, I4 may be found in an explicit 
analytical form, the dynamical equation can hardly be approximated by a 
differential equation with constant coefficients [7]. One possible approach to 
simplify further this equation is to try to find relations between these seven 
integrals, allowing us to exclude some of them in equation (1). In the 
simplest case we are to seek for linear ones. The attractivity of this idea 
increases when non-integer powers n are considered, because (at least at the 
present time) we do not even know any explicit analytical solutions of the 
integrals I0─, I0+, I0, …, I4. Dynamical equation (1) determines the structure 
of elliptical discs with particles sharing a common longitude of periastron. If 
the attempts to solve it to the very end by purely analytical methods appear 
to be unsuccessful, we nevertheless hope that the attained simplifications 
will allow us to accomplish some more problems. For example, the number 
of branch points of the solutions, the limitations imposed on the domains of 
the solutions, certain qualitative characteristics of theirs, etc. Of course, 
analytically simplified forms of (1) are probably preferred when numerical 
methods for solving are used.   

In conclusion, we would line to make the following remark. Above 
we have written definitions (2) and (3) of the integrals I0─(e, ė, n) and I0+(e, 
ė, n), accordingly. At first sight, it may seem that this is an unnecessary 
supplement to definitions (4) of the integrals Ij(e, ė, n), (j =  0,1,…, 4). In 
fact, this information was not used when deriving the final expression (19). 
This is so because the latter result serves only to reveal the property that a 
factor ė appears, when the free term F(e, ė, n) is factorized. For this purpose, 
we do not perform any differentiations of integrals Ij(e, ė, n), (j =  0,1,…, 4). 
Such operations will lead to the appearance of I0─(e, ė, n) and I0+(e, ė, n), 
and, consequently, of their presence in dynamical equation (1). It can also 
be seen in explicit form, if we try to eliminate some of the integrals I0, I1, 
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…, I4 by deriving linear relations between them, including differentiation 
operations. This will be subject of a forthcoming paper and we provide 
definitions (2) and (3) mostly for completeness of the discussion.    
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ТЪНКИ ВИСКОЗНИ ЕЛИПТИЧНИ АКРЕЦИОННИ 
ДИСКОВЕ С ОРБИТИ, ИМАЩИ ОБЩА ДЪЛЖИНА 

НА ПЕРИАСТРОНА. IV. ДОКАЗАТЕЛСТВО  
НА ХОМОГЕННОСТТА НА ДИНАМИЧНОТО 
УРАВНЕНИЕ, ОПРЕДЕЛЯЩО СТРУКТУРАТА  
НА ДИСКА, ЗА ПРОИЗВОЛНИ СТЕПЕННИ 

ПОКАЗАТЕЛИ n В ЗАКОНА ЗА ВИСКОЗИТЕТА 
η = β Σ n

 
Димитър Димитров 

 
Резюме 

Ние разглеждаме моделите на елиптични акреционни дискове, 
разработени от Любаркий и др. [1], и дискутираме техните специфични 
свойства. В частност, ние наблягаме на възможните отклонения от 
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Кеплеровото въртене, магниторотационната нестабилност, външното 
осветяване на диска и т. н., които могат да имат място при реалните 
акреционни потоци (както е указано при много от наблюденията), но 
които не са взети под внимание в горните теоретични конструкции. 
Съгласно моделите, коефициентът на вискозитета η е прието да има 
формата на степенен закон: η = β Σ n (β е константа, Σ е повърхностната  
плътност на диска). Ние изследваме динамичното уравнение, което е 
получено от Любаркий и др. [1], за едно непрекъснато множество от 
стойности на степенния показател n. Физически приемливите значения 
на n обхващат областта между ≈ - 1 и ≈ + 3. Основният резултат на 
нашето изследване е, че динамичното уравнение, определящо 
структурата на елиптичните дискове, е едно хомогенно обикновено 
диференциално уравнение от втори ред за всички стойности на n в 
посочения интервал. Това е обобщение на нашия по-рано установен 
резултат за случая само на целочислени стойности на n.   
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